
INTO-CPS

Oct 21, 2020

Content

1 Tools 3
1.1 Performing Co-Simulations . 3

1.1.1 INTO-CPS Desktop Application . 3
1.1.2 INTO-CPS Cloud Application . 3
1.1.3 Modelio . 3
1.1.4 Maestro . 10

1.2 Creating new FMUs . 10
1.2.1 Overture . 11
1.2.2 PyFMU . 11
1.2.3 20-sim . 11
1.2.4 OpenModelica . 12

1.3 Verifying compliance of FMUs . 14
1.3.1 FMIChecker . 15
1.3.2 RT-Tester . 15

1.4 Interfacing . 16
1.4.1 RabbitMQ FMU . 16

2 Tutorials 17
2.1 Case Studies . 17

2.1.1 INTO-CPS FMI JNI . 17
2.1.2 Incubator . 17
2.1.3 Single Tank . 18
2.1.4 Three Tank . 18
2.1.5 UAV Swarm . 18
2.1.6 Fan Coil Unit (FCU) . 18
2.1.7 Line Follower Robot . 18
2.1.8 Ether . 18
2.1.9 Turn Indication . 18
2.1.10 Mass Spring Damper . 18

3 Guides 19

4 Contributors Guide 21
4.1 Updating the documentation . 21
4.2 Contact . 22
4.3 Issues . 22

i

ii

INTO-CPS

INTO-CPS is a collection of tools developed to aid the development of Cyber-Physical Systems (CPSs). Typical for
such systems is a large number of complex components of different nature, such as software controllers, mechanical
parts and electrical circuits. Simulating such system requires special algorithms due to the different formalisms used
to model the individual components. This is possible using a simulation technique known as co-simulation, enabled
by the use of a model exchange standard called Functional Mock-up Interface (FMI) standard.

Specifically, INTO-CPS provides all the necessary tools for this such as:

• Modelling the individual components referred to as a Functional Mock-up Unit (FMU)

• Performing a co-simulation

• Evaluating the impact of different design decisions

• Validating and testing FMUs

• Coupling the simulation with real-life prototypes

A full list of the tools and how to obtain them can be found in Tools and additional information is available in the
following documents:
The INTO-CPS Manifesto

The INTO-CPS User Manual

The INTO-CPS Examples Compendium

The INTO-CPS Method Guidelines

For a demonstration of the tools please check the INTO-CPS Association’s YouTube.

The Tutorials demonstrates how the different tools can be used together to model and simulate a various types of
systems.

In order to use the tools effectively it may be worthwhile to read some theory on the technologies involved. This
information can be found in the Guides section, where topics such as co-simulation and FMI are covered.

Content 1

https://gitter.im/INTO-CPS/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge
https://www.youtube.com/channel/UCHfzhFYht6sKiqarjqbmtaQ

INTO-CPS

2 Content

CHAPTER 1

Tools

The INTO-CPS toolchain consists of several tools for developing Cyber-Physical Systems. These tools provide
functionality needed to enable FMI based co-simulation namely as Creating new FMUs, verify and Performing Co-
Simulations the simulation of FMUs. To keep the infrastructure as lightweight and flexible as possible the projects are
hosted independently in their own repositories and provide standalone documentation.

A list of the tools and, grouped by the functionality they provide, can be found below:

1.1 Performing Co-Simulations

1.1.1 INTO-CPS Desktop Application

The INTO-CPS Desktop Application provides a graphical user interface which can be used to configure and orchestrate
co-simulation scenarios. Install instruction are found in the application’s documentation.

1.1.2 INTO-CPS Cloud Application

The INTO-CPS Cloud Application is a port of the Desktop Application to run in a cloud environment.

1.1.3 Modelio

Modelio is a combined UML/BPMN modeler supporting a wide range of models and diagrams. Its main features are:

• SysML support integrated with UML and BPMN

• XMI import and export

• Scripting language support (Jython)

• Extensibility: Modelio can be extended for any language, methodology or modeling technique just by adding
modules. You can either use existing modules or else develop your own.

3

https://into-cps-association.readthedocs.io/projects/desktop-application/en/latest/
https://into-cps-association.readthedocs.io/projects/desktop-application/en/latest/

INTO-CPS

In addition, to its general purpose use, a special SysML profile allows Modelio to be used to setup co-simulation sce-
narios that can be executed within the INTO-CPS Desktop Application. For information on how to use this integration
see Desktop Application Modelio integration

License

Modelio is open source software. Most of the source code is under the GNU GPL license. The module runtime, used
to develop extensions to Modelio, is under the Apache license providing a very large degree of freedom to anyone
wishing to reuse and embed the code.

Full details on Modelio licensing conditions can be found here.

Download and Installation

Modelio’s current version is 3.4.0.

Binary distribution archives for Linux and Windows are available on the download page of the Modelio community
site.

Installation requirements and instructions can be found in our Quick start guide on the community site.

Modelio version contents can be found in the [[Version history]].

Installing INTO-CPS support

A specific project have been created into Modelio.org forge http://forge.modelio.org/projects/intocps.

This latter will help you with:

1. A dedicated wiki http://forge.modelio.org/projects/into-cps-user-manual-english/wiki

4 Chapter 1. Tools

https://into-cps-association.readthedocs.io/projects/desktop-application/en/latest/integrations.html#modelio
http://www.modelio.org/about-modelio/license.html
http://www.modelio.org/downloads/download-modelio.html
http://www.modelio.org/documentation/installation.html
http://forge.modelio.org/projects/intocps
http://forge.modelio.org/projects/into-cps-user-manual-english/wiki

INTO-CPS

2. Lattest version of INTO-CPS extension http://forge.modelio.org/projects/intocps-modelio34/files

3. Issues reporting http://forge.modelio.org/projects/intocps/issues/new

To be able to use INTO-CPS extension into Modelio you have to first install the INTO-CPS module which is available
here:

http://forge.modelio.org/projects/intocps-modelio34/files.

and then add it to the Modelio module catalog.

Add INTO-CPS Extension

Key:

1. Run the Configuration Modules catalog. . . command.

2. To add a module, click on Add a module to the catalog. . . and use the file browser to select the modules
(*.jmdac files).

1.1. Performing Co-Simulations 5

http://forge.modelio.org/projects/intocps-modelio34/files
http://forge.modelio.org/projects/intocps/issues/new
http://forge.modelio.org/projects/intocps-modelio34/files

INTO-CPS

3. To remove a module, select the module in question and click on the Remove module from the catalog button.

4. To download new versions of modules into the catalog, click on Check for new versions. . . .

Installing modules in a project

Installing a module in a project

Steps:

1. Click on [] to expand the Modules catalog.

2. In the Modules catalog, select the module you want to install.

3. Click on [] to install the module in the project..

6 Chapter 1. Tools

INTO-CPS

Documentation

For end users

• User’s manual (wiki)

• Installing a module in to Modelio (wiki)

• Configuring Modelio project modules (wiki)

Connection Export

• How to export the configuration of a BlockInstance.

To generate a configuration from a BlockInstance, select the desired blockInstance, right
click on it and in the INTO-CPS entry choose Generate configuration, as shown in

.

1.1. Performing Co-Simulations 7

http://forge.modelio.org/projects/modelio3-usermanual-english-300/wiki
http://forge.modelio.org/projects/modelio3-usermanual-english-330/wiki/Modeler-_modeler_modelio_settings_modules_catalog
http://forge.modelio.org/projects/modelio3-usermanual-english-330/wiki/Modeler-_modeler_managing_projects_configuring_project_modules

INTO-CPS

Choose a relevant name and click on Generate.

FMU Import/Export

Two commands have been implemented in order to link SysML modelling and FMI definition i.e. the modeldescrip-
tion.xml file defined inside the FMI 2.0 Specification.

FMI Import

• This command imports the modelDescription.xml document describing the interface of a FMI and created an
corresponding SysML Block under Modelio.

• Importing is easily done via the right click content menu, under a Package, as shown on the screenshot below.

8 Chapter 1. Tools

https://www.fmi-standard.org/downloads

INTO-CPS

FMI Export

• This only exports the modelDescription.xml document describing the interface of a FMI and not its behavior.

• Exporting is easily done via the right click content menu, under a SysML Block, as shown on the screenshot
below.

1.1. Performing Co-Simulations 9

INTO-CPS

1.1.4 Maestro

Maestro is a tool for orchestrating co-simulation of FMUs. It features both a command line interface and a web
interface. The web interface is used internally by the INTO-CPS Desktop Application, but it can also be downloaded
and used seperately.

All development efforts related to Maestro is available at https://github.com/INTO-CPS-Association/maestro.
Maestro1 Documentation is available here: https://into-cps-maestro.readthedocs.io/en/docs/
Maestro2 is currently under development and available at the branch 2.0.0-alpha with documentation here:
https://into-cps-maestro.readthedocs.io/en/latest/.

1.2 Creating new FMUs

Several commercial and open-source tools exist, that are enables the creation of FMUs. An comprehensive list of these
can be found in the tools section on the FMI-standard’s website.

10 Chapter 1. Tools

https://github.com/INTO-CPS-Association/maestro
https://into-cps-maestro.readthedocs.io/en/docs/
https://into-cps-maestro.readthedocs.io/en/latest/
https://fmi-standard.org/tools/

INTO-CPS

Below is a list of tools that are part of INTO-CPS that supports FMI export.

1.2.1 Overture

The Overture community supports the modelling method The Vienna Development Method (VDM) which is a set
of modelling techniques that have a long and successful history in both research and industrial application in the
development of computer-based systems. The Overture Tool is an open-source integrated development environment
(IDE) for developing and analysing VDM models. The tool suite is written entirely in Java and built on top of the
Eclipse platform.

By installing a plugin, Overture can export its models as plain C-code and as standalone FMUs that can be imported
into a FMI compatible simulation tool such as the INTO-CPS Desktop Application.

1.2.2 PyFMU

PyFMU is a command line program that enables the rapid development of FMUs using Python.

1.2.3 20-sim

20-sim is a modeling and simulation program for mechatronic systems. With 20-sim you can enter model graphically,
similar to drawing an engineering scheme. With these models you can simulate and analyze the behavior of multi-
domain dynamic systems and create control systems. You can even generate C-code and run this code on hardware for
rapid prototyping and HIL-simulation.

1.2. Creating new FMUs 11

http://overturetool.org
http://overturetool.org/documentation/generating-c-code.html
http://overturetool.org/documentation/fmi/fmi-support.html
https://into-cps-association.readthedocs.io/projects/desktop-application/en/latest/
https://into-cps-association.readthedocs.io/projects/pyfmu/en/develop/
https://www.20sim.com/

INTO-CPS

FMI support for INTO-CPS is provided using a code generation template.

Note: For 20-sim 4.5, this template can be downloaded from our GitHub repository and the installation instructions
can be found in the included README file. Starting with 20-sim 4.6, the template is available out of the box.

Instructions on how to set up automated compilation of the .fmu are given under the section External dependencies in
the above README file.

1.2.4 OpenModelica

OpenModelica is an open-source Modelica-based modeling and simulation environment intended for industrial and
academic usage.

12 Chapter 1. Tools

https://github.com/controllab/fmi-export-20sim
https://github.com/controllab/fmi-export-20sim/blob/master/README.md
https://github.com/controllab/fmi-export-20sim/blob/master/README.md
https://www.openmodelica.org/

INTO-CPS

The short-term goal is to develop an efficient interactive computational environment for the Modelica language, as
well as a rather complete implementation of the language. It turns out that with support of appropriate tools and
libraries, Modelica is very well suited as a computational language for development and execution of both low level
and high level numerical algorithms, e.g. for control system design, solving nonlinear equation systems, or to develop
optimization algorithms that are applied to complex applications.

The longer-term goal is to have a complete reference implementation of the Modelica language, including simulation
of equation based models and additional facilities in the programming environment, as well as convenient facilities
for research and experimentation in language design or other research activities. However, our goal is not to reach the
level of performance and quality provided by current commercial Modelica environments that can handle large models
requiring advanced analysis and optimization by the Modelica compiler.

Documentation

The OpenModelica users guide as pdf or epub or as html. The OpenModelica API documentation. More documenta-
tion can be found here.

Export an FMU from OpenModelica

To export an FMU from a Modelica model one can use a exportFMU.mos script:

One can run the exportFMU.mos script via the omc[.exe] executable.
On Windows:
%OPENMODELICAHOME%\bin\omc exportFMU.mos

1.2. Creating new FMUs 13

https://modelica.org
https://openmodelica.org/doc/OpenModelicaUsersGuide/
https://openmodelica.org/doc/OpenModelicaUsersGuide/latest/
https://build.openmodelica.org/Documentation/OpenModelica.Scripting.html
https://openmodelica.org/useresresources/userdocumentation

INTO-CPS

On Linux (if OpenModelica is installed via apt-get):
omc exportFMU.mos

On MacOS X:
omc exportFMU.mos

Documentation of the function translateModelFMU.

Link to OpenModelica latest binaries

The latest release binaries for Windows can be found here. The latest nightly-builds binaries for Windows can be
found here.

We also support Linux and Mac OS installations.

For more information see OpenModelica users documentation.

1.3 Verifying compliance of FMUs

To maximize compatibility between an FMU and existing simulation tools it is import to ensure strict compliance to
the FMI standard. Unfortunately, the current situation is less that ideal, since a large portion of FMUs encountered do
not implement the standard correctly.

14 Chapter 1. Tools

https://build.openmodelica.org/Documentation/OpenModelica.Scripting.translateModelFMU.html
https://openmodelica.org/download/download-windows
https://build.openmodelica.org/omc/builds/windows/releases/1.9.3/
https://build.openmodelica.org/omc/builds/windows/nightly-builds/
https://openmodelica.org/download/download-linux
https://openmodelica.org/download/download-mac
https://openmodelica.org/useresresources/userdocumentation

INTO-CPS

1.3.1 FMIChecker

The FMIChecker is a command line tool that provides thorough static check of FMUs. Install instructions can be
found on the GitHub Repository. Alternatively, the tool can be accessed at this webpage, eliminating the need to
install the tool.

1.3.2 RT-Tester

Core

RT-Tester is a test automation tool for automatic test generation, test execution and real-time test evaluation. Key
features include a strong C/C++-based test script language, high performance multi-threading, and hard real-time
capability. The tool has been successfully applied in avionics, rail automation, and automotive test projects.

More information is available on the product web site here.

Model Based Extension (RTT-MBT)

RT-Tester Model Based Test Case and Test Data Generator (RTT-MBT) supports model-based testing (MBT), that is,

1.3. Verifying compliance of FMUs 15

https://github.com/INTO-CPS-Association/FMI-VDM-Model
https://github.com/INTO-CPS-Association/FMI-VDM-Model
https://sweng.au.dk/fmiutils/fmichecker
https://www.verified.de/products/rt-tester/
https://www.verified.de/products/rt-tester/
https://www.verified.de/products/model-based-testing/

INTO-CPS

automated generation of test cases, test data, and test procedures from UML/SysML models. A number of common
modelling tools can be used as front-end for this. The derived test procedures use the RT-Tester Core as a back-end,
allowing the system under test to be provided on real hardware, software only, or even just simulation to aid test
model development. RTT-MBT includes requirement tracing from test models down to test executions and allows for
powerful status reporting in large scale testing projects. More information is available on the product web site here.

FMI/FMU support for RT-Tester / RTT-MBT

The RTT-MBT component is catering for FMI/FMU by a specialised feature release that allows to cast a test procedures
to an FMI2-compliant FMU. That FMU is in input to the COE.

Links to Documentation

The links to documentation of different tools are:

• Maestro CLI Interface

• INTO-CPS Library

• Python FMUs

• Maestro v2

Downloads

In order to operate properly, it is necessary to first obtain the prerequisite tools Python-2.7 and gcc-4.9_v2. An installer
collection is available for Windows via GitHub from here.

RT-Tester Core, RTT-MBT, RTTUI3, and prepared example projects can be downloaded and installed by one click (on
Windows) using the VSI_bundle_v0_1_1.exe file. This file can be downloaded via GitHub from here.

Updates of the installers will be available at the same URL & GitHub repository.

1.4 Interfacing

1.4.1 RabbitMQ FMU

RabbitMQ FMU provides a way to bring external data into an FMI co-simulation.

16 Chapter 1. Tools

https://www.verified.de/products/model-based-testing/
https://github.com/INTO-CPS-Association/maestro/wiki/Getting-Started:-Running-a-co-simulation-through-maestro-CLI
https://gitlab.au.dk/clagms/intocps-fmi-native-api-example
https://into-cps-association.readthedocs.io/projects/pyfmu/en/develop/
https://into-cps-maestro.readthedocs.io/en/latest/index.html
https://github.com/INTO-CPS-Association/vsi-supplements/releases/download/v0.1.1/install_Python27_gcc49_v2.exe
https://github.com/INTO-CPS-Association/vsi-supplements/releases/download/v0.1.1/VSI_bundle_v0_1_1.exe
https://github.com/INTO-CPS-Association/fmu-rabbitmq

CHAPTER 2

Tutorials

The tutorials are available at https://github.com/INTO-CPS-Association/training

2.1 Case Studies

There are several case studies in the INTO-CPS Project. Besides the links below, please see the file The INTO-CPS
Examples Compendium.

2.1.1 INTO-CPS FMI JNI

It is possible to write Functional Mockup Units (FMUs) in Java. This repository illustrates the use of Java Native
Interface (JNI) for providing Functional Mockup Interface (FMI) to FMUs written in Java.

2.1.2 Incubator

The Incubator case study is currently under development. It will be added in a future update.

17

https://github.com/INTO-CPS-Association/training
https://gitlab.au.dk/clagms/intocps-fmi-native-api-example

INTO-CPS

2.1.3 Single Tank

2.1.4 Three Tank

2.1.5 UAV Swarm

2.1.6 Fan Coil Unit (FCU)

2.1.7 Line Follower Robot

2.1.8 Ether

2.1.9 Turn Indication

2.1.10 Mass Spring Damper

18 Chapter 2. Tutorials

CHAPTER 3

Guides

If you are interesting in publishing a guide related to concepts relevant to INTO-CPS, then please see Contributors
Guide.

If you would like to take a more practical approach to learning these topics is by following the tutorials found in the
Tutorials section.

Warning: Currently the concepts simulation, co-simulation, design space exploration, Functional Mock-up Inter-
face and Functional Mock-up Unit are explained in The INTO-CPS Method Guidelines

19

INTO-CPS

20 Chapter 3. Guides

CHAPTER 4

Contributors Guide

This section of the documentation provides relevant information to maintainers and contributors of the project.
If you are interested in becoming a contributor, please see https://into-cps.org/contact/.

4.1 Updating the documentation

The documentation is build and hosted by a service called Read the docs (rtd) which uses Sphinx to build html, pdf and
epub documentation. The process is automated such that any commit to the INTO-CPS Documentation repo causes
the documentation to be updated. Sphinx uses a markdown-like format called reStructuredText (rst) which is suitable
for creating hierarchical document structures contains cross-references.

Anyone can contribute to the documentation provided they have write access to INTO-CPS Documentation repo.
The documentation shown on this webpage is stored in the Documentation/docs directory as shown below. Of
particular interest is the index.rst and conf.py file, the former being the entry point of the documentation and
the latter being the configuration used by Sphinx.

21

https://gitter.im/INTO-CPS/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge
https://into-cps.org/contact/
https://readthedocs.org/
https://www.sphinx-doc.org/en/master/
https://github.com/INTO-CPS-Association/Documentation.git
https://docutils.sourceforge.io/rst.html
https://github.com/INTO-CPS-Association/Documentation.git
https://www.sphinx-doc.org/en/master/

INTO-CPS

The documentation can be build using the make command in the docs folder.

make html # builds html docs
make latexpdf # builds pdf
make linkcheck # verifies links are correct

A good way to familiarize yourself with the workflow and rst is to go through Read the docs: Getting started with
Sphinx. Additionally, there exists a several good references on rst such as Sphinx reStructuredText Primer, Thomas
Cokelar rst Cheatsheet , and Ralsina rst Cheatsheet .

4.2 Contact

The easiest way to get in contact with us is using the INTO-CPS Association Gitter channel or https://into-cps.org/
contact/. This is a great place for less formal questions and sharing ideas if you want to contribute.

In case you have encountered an bug in one of the tools, please use the appropriate issue tracker as listed in Issues.

4.3 Issues

Have you encountered any issues related to the tools? If so these can be submitted to the bug tracker of the respective
projects. The majority of these project are hosted on GitHub and makes use of its built-in issue tracker. The remaining

22 Chapter 4. Contributors Guide

https://docs.readthedocs.io/en/stable/intro/getting-started-with-sphinx.html
https://docs.readthedocs.io/en/stable/intro/getting-started-with-sphinx.html
https://www.sphinx-doc.org/en/master/usage/restructuredtext/index.html
https://thomas-cokelaer.info/tutorials/sphinx/rest_syntax.html#id4
https://thomas-cokelaer.info/tutorials/sphinx/rest_syntax.html#id4
https://github.com/ralsina/rst-cheatsheet/blob/master/rst-cheatsheet.rst
https://gitter.im/INTO-CPS/community?utm_source=share-link&utm_medium=link&utm_campaign=share-link
https://into-cps.org/contact/
https://into-cps.org/contact/

INTO-CPS

use other systems that may require a sign-up in order to view and submit issues.

Below is a list of the issue trackers of the different tools:

• Maestro

• INTO-CPS Desktop Application

• Overture

• 20-sim FMU export

• OpenModelica

• Modelio: general issues and INTO-CPS related issues

• RT-Tester (signup required)

Warning: TODO:

• 20-sim issue tracker appears to no longer exist.

• DSE repo does not exist/”empty repo”

Likewise, if you encounter an error in the documentation, such as a dead link, or you have a suggestion for how to
improve the documentation, please submit an issue to the documentation issue tracker

4.3. Issues 23

https://github.com/INTO-CPS-Association/maestro/issues
https://github.com/INTO-CPS-Association/into-cps-application/issues
https://github.com/overturetool/overture/issues
https://github.com/controllab/fmi-export-20sim/issues/
https://trac.openmodelica.org/OpenModelica/report
https://www.modelio.org/community/bug-tracker.html
https://forge.modelio.org/projects/intocps/issues
https://software.verified.de/mantis?project_id=76
https://github.com/INTO-CPS-Association/Documentation/issues

	Tools
	Performing Co-Simulations
	INTO-CPS Desktop Application
	INTO-CPS Cloud Application
	Modelio
	Maestro

	Creating new FMUs
	Overture
	PyFMU
	20-sim
	OpenModelica

	Verifying compliance of FMUs
	FMIChecker
	RT-Tester

	Interfacing
	RabbitMQ FMU

	Tutorials
	Case Studies
	INTO-CPS FMI JNI
	Incubator
	Single Tank
	Three Tank
	UAV Swarm
	Fan Coil Unit (FCU)
	Line Follower Robot
	Ether
	Turn Indication
	Mass Spring Damper

	Guides
	Contributors Guide
	Updating the documentation
	Contact
	Issues

